50 research outputs found

    Virtual Reality Applications in Rehabilitation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39510-4_1One of the most valuable applications of virtual reality (VR) is in the domain of rehabilitation. After brain injuries or diseases, many patients suffer from impaired physical and/or cognitive capabilities, such as difficulties in moving arms or remembering names. Over the past two decades, VR has been tested and examined as a technology to assist patients’ recovery and rehabilitation, both physical and cognitive. The increasing prevalence of low-cost VR devices brings new opportunities, allowing VR to be used in practice. Using VR devices such as head-mounted displays (HMDs), special virtual scenes can be designed to assist patients in the process of re-training their brain and reorganizing their functions and abilities. However, such VR interfaces and applications must be comprehensively tested and examined for their effectiveness and potential side effects. This paper presents a review of related literature and discusses the new opportunities and challenges. Most of existing studies examined VR as an assessment method rather than a training/exercise method. Nevertheless, promising cases and positive preliminary results have been shown. Considering the increasing need for self-administered, home-based, and personalized rehabilitation, VR rehabilitation is potentially an important approach. This area requires more studies and research effort

    User-centered virtual environment design for virtual rehabilitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves) using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy.</p> <p>Methods</p> <p>An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design.</p> <p>Results</p> <p>The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better understanding user outcomes, especially for patient populations.</p> <p>Conclusions</p> <p>The stereoacuity testing confirms that without benchmarking in the design cycle poor user performance could be misconstrued as resulting from the participant's injury state. Thus, a user-centered design cycle that includes benchmarking for the different sensory modalities is recommended for accurate interpretation of the efficacy of the virtual environment based rehabilitation programs.</p

    A psycho-Geoinformatics approach for investigating older adults’ driving behaviours and underlying cognitive mechanisms

    Get PDF
    Introduction: Safe driving constantly challenges the driver’s ability to respond to the dynamic traffic scene under space and time constraints. It is of particular importance for older drivers to perform sufficient visual and motor actions with effective coordination due to the fact of age-related cognitive decline. However, few studies have been able to integrate drivers’ visual-motor behaviours with environmental information in a spatial-temporal context and link to the cognitive conditions of individual drivers. Little is known about the mechanisms that underpin the deterioration in visual-motor coordination of older drivers. Development: Based on a review of driving-related cognitive decline in older adults and the context of driver-vehicle-environment interactions, this paper established a conceptual framework to identify the parameters of driver’s visual and motor behaviour, and reveal the cognitive process from visual search to vehicle control in driving. The framework led to a psycho-geoinformatics approach to measure older drivers’ driving behaviours and investigate the underlying cognitive mechanisms. The proposed data collection protocol and the analysis and assessments depicted the psycho-geoinformatics approach on obtaining quantified variables and the key means of analysis, as well as outcome measures. Conclusions: Recordings of the driver and their interactions with the vehicle and environment at a detailed scale give a closer assessment of the driver’s behaviours. Using geoinformatics tools in driving behaviours assessment opens a new era of research with many possible analytical options, which do not have to rely on human observations. Instead, it receives clear indicators of the individual drivers’ interactions with the vehicle and the traffic environment. This approach should make it possible to identify lower-performing older drivers and problematic visual and motor behaviours, and the cognitive predictors of risky driving behaviours. A better targeted regulation and tailored intervention programs for older can be developed by further research

    Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time

    Get PDF
    Abstract Background The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. Methods The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. Results The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. Conclusion Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents

    Diverses

    No full text
    corecore